Yeast Uri1p promotes translation initiation and may provide a link to cotranslational quality control.

نویسندگان

  • Anna Deplazes
  • Natalie Möckli
  • Brian Luke
  • Daniel Auerbach
  • Matthias Peter
چکیده

Translation initiation in eukaryotes is accomplished by a large set of translation initiation factors, some of which are regulated by signals monitoring intracellular and environmental conditions. Here, we show that Uri1p is required for efficient translation initiation in budding yeast. Indeed, uri1Delta cells are slow growing, sensitive to translation inhibitors and they exhibit an increased 80S peak in polysome profiles. Moreover, GCN4 translation is derepressed in uri1Delta cells, strongly supporting an initiation defect. Genetic and biochemical experiments indicate that Uri1p interacts with the translation initiation factor eIF1A and promotes ternary complex (TC) recruitment to the 40S subunit. Interestingly, we found that Uri1p is also part of a chaperone-network, including the prefoldin Pfd6p and several other proteins involved in cotranslational quality control such as the ribosome-associated Hsp70 chaperone Ssb1p, the Hsp40 Sis1p and the translation elongation factor eEF1A. Together with genetic data, these interactions indicate that Uri1p may coordinate translation initiation and cotranslational quality control.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Not4 RING E3 Ligase: A Relevant Player in Cotranslational Quality Control

The Not4 RING E3 ligase is a subunit of the evolutionarily conserved Ccr4-Not complex. Originally identified in yeast by mutations that increase transcription, it was subsequently defined as an ubiquitin ligase. Substrates for this ligase were characterized in yeast and in metazoans. Interestingly, some substrates for this ligase are targeted for polyubiquitination and degradation, while others...

متن کامل

Cotranslational assembly of the yeast SET1C histone methyltransferase complex.

While probing the role of RNA for the function of SET1C/COMPASS histone methyltransferase, we identified SET1RC (SET1 mRNA-associated complex), a complex that contains SET1 mRNA and Set1, Swd1, Spp1 and Shg1, four of the eight polypeptides that constitute SET1C. Characterization of SET1RC showed that SET1 mRNA binding did not require associated Swd1, Spp1 and Shg1 proteins or RNA recognition mo...

متن کامل

Lit Lunch 2/6/14

The putative eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved and essential protein present in all organisms except bacteria. To be activated, eIF5A requires the conversion of a specific residue of lysine into hypusine. This hypusine modification occurs posttranslationally in two enzymatic steps, and the polyamine spermidine is the substrate. Despite having an essential...

متن کامل

mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide.

The mechanisms that couple translation and protein processing are poorly understood in higher eukaryotes. Although mammalian target of rapamycin (mTOR) complex 1 (mTORC1) controls translation initiation, the function of mTORC2 in protein synthesis remains to be defined. In this study, we find that mTORC2 can colocalize with actively translating ribosomes and can stably interact with rpL23a, a l...

متن کامل

Translation initiation factor eIF-5A expressed from either of two yeast genes or from human cDNA. Functional identity under aerobic and anaerobic conditions.

Translation initiation factor eIF-5A (previously named eIF-4D) is an essential and highly conserved protein in eukaryotic cells that promotes formation of the first peptide bond. One of its lysine residues is post-translationally modified by spermidine to form hypusine, a unique residue required for eIF-5A activity. In Saccharomyces cerevisiae eIF-5A is encoded by two highly homologous genes, T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 28 10  شماره 

صفحات  -

تاریخ انتشار 2009